SOCCOM Publications

Peer-reviewed publications

Authors should acknowledge NSF support – sample text for acknowledging SOCCOM funding and data sources.

Google Scholar – Papers using data and models produced by the SOCCOM Project

Peer-reviewed publications

2024

  1. Observing system requirements for measuring high-frequency air–sea fluxes in the Southern Ocean
    Prend, CJ, et al. 2025. Observing system requirements for measuring high-frequency air–sea fluxes in the Southern Ocean. Elem Sci Anth, 13: 1. DOI:10.1525/elementa.2024.00061
  2. The influence of surface fluxes on export of Southern Ocean intermediate and mode water in coupled climate models
    Almeida, L., M.R. Mazloff & M.M. Mata (2024). The influence of surface fluxes on export of Southern Ocean intermediate and mode water in coupled climate models. Journal of Geophysical Research: Oceans, 129, e2024JC021841. DOI:10.1029/2024JC021841
  3. The Seasonal Patterns of Hydrographic and Biogeochemical Variables in the Ross Sea: A BGC-Argo
    Analysis
    Cao, R., W.O. Smith Jr., Y. Zhong, S. Riser, K.S. Johnson, L. Talley (2024). The Seasonal Patterns of Hydrographic and Biogeochemical Variables in the Ross Sea: A BGC-Argo Analysis, Deep-Sea Research Part II, DOI:10.1016/j.dsr2.2024.105436.
  4. Future Priorities for Observing the Dynamics of the Southern Ocean
    Wilson, E. A., and Coauthors (2024). Future Priorities for Observing the Dynamics of the Southern Ocean. Bull. Amer. Meteor. Soc., 105, E2316–E2323, DOI:10.1175/BAMS-D-24-0254.1.
  5. Effects of mesoscale eddies on southern ocean biogeochemistry
    Keppler, L., Y.A. Eddebbar, S.T. Gille, N. Guisewhite, M.R. Mazloff, V. Tamsitt, et al. (2024). Effects of mesoscale eddies on southern ocean biogeochemistry. AGU Advances, 5, e2024AV001355. DOI:10.1029/2024AV001355
  6. Spatial and seasonal controls on eddy subduction in the Southern Ocean
    Chen, M. L., & O. Schofield (2024). Spatial and seasonal controls on eddy subduction in the Southern Ocean. Geophysical Research Letters, 51, e2024GL109246. DOI:10.1029/2024GL109246
  7. Chlorophyll production in the Amundsen Sea boosts heat flux to atmosphere and weakens heat flux to ice shelves
    Twelves, A. G., D.N. Goldberg, P.R. Holland, S.F. Henley, M.R. Mazloff, M. R., and D.C. Jones (2024). Chlorophyll production in the Amundsen Sea boosts heat flux to atmosphere and weakens heat flux to ice shelves. Journal of Geophysical Research: Oceans, 129, e2024JC021121. DOI:10.1029/2024JC021121
  8. Optimizing observational arrays for biogeochemistry in the tropical Pacific by estimating correlation lengths
    Chu, W.U., M.R. Mazloff, A. Verdy, S.G. Purkey, and B.D. Cornuelle (2024). Optimizing observational arrays for biogeochemistry in the tropical Pacific by estimating correlation lengths. Limnol Oceanogr Methods. https://doi.org/10.1002/lom3.10641
  9. Southern Ocean [in “State of the Climate in 2023”]
    Thomalla, S., R. Beadling, M. du Plessis, E. De Souza, D. Fernandez, S. T. Gille, S. A. Josey, G. MacGilchrist, A. Maouchos, C. R. McMahon, L. Pezzi, C. Schultz, J.-R. Shi, S. C. Tripathy, and K. Turner, 2024. Southern Ocean [in “State of the Climate in 2023”], Bull. Amer. Meteor. Soc., 105 (8), in press
  10. Extratropical storms induce carbon outgassing over the Southern Ocean
    Carranza, M.M., M.C. Long, A. Di Luca, et al. (2024). Extratropical storms induce carbon outgassing over the Southern Ocean. npj Clim Atmos Sci 7, 106. DOI:10.1038/s41612-024-00657-7
  11. Ekman-driven salt transport as a key mechanism for open-ocean polynya formation at Maud Rise
    Narayanan, A., F. Roquet, B. Gülk, S.T. Gille, M.R. Mazloff, A. Silvano, A.C. Naveira Grabato (2024). Ekman-driven salt transport as a key mechanism for open-ocean polynya formation at Maud Rise. Sci. Adv. 10, eadj0777. DOI:10.1126/sciadv.adj0777
  12. Southern Ocean high-resolution (SOhi) modeling along the Antarctic Ice Sheet periphery
    Dinh, A., E. Rignot, M. Mazloff & I. Fenty (2024). Southern Ocean high-resolution (SOhi) modeling along the Antarctic Ice Sheet periphery. Geophysical Research Letters, e2023GL106377. DOI:10.1029/2023GL106377
  13. Seasonality modulates particulate organic carbon dynamics in mid-latitudes of South Pacific and South Atlantic Oceans
    Bif, M.B., J.S. Long, K.S. Johnson (2024). Seasonality modulates particulate organic carbon dynamics in mid-latitudes of South Pacific and South Atlantic Oceans, Journal of Marine Systems, Volume 241, 103916. DOI:10.1016/j.jmarsys.2023.103916
  14. Tracer stirring and variability in the Antarctic Circumpolar Current near the Southwest Indian Ridge
    Balwada, D., A.R. Gray, L.A. Dove & A.F. Thompson (2024). Tracer stirring and variability in the Antarctic Circumpolar Current near the Southwest Indian Ridge. Journal of Geophysical Research: Oceans, 129, e2023JC019811. https://doi.org/10.1029/2023JC019811
  15. Acoustic float tracking with the Kalman smoother
    Chamberlain, P., B. Cornuelle, L. D. Talley, K. Speer, C. Hancock, and S. Riser (2023). Acoustic float tracking with the Kalman smoother. J. Atm. Oceanic Tech., 40, 15-35. DOI:10.1175/JTECH-D-21-0063.1

2023

  1. Decadal reorganization of Subantarctic Mode Water
    Cerovečki, I., & F.A. Haumann (2023). Decadal reorganization of Subantarctic Mode Water. Geophysical Research Letters, 50, e2022GL102148. DOI:10.1029/2022GL102148
  2. The Southern Ocean carbon cycle 1985–2018: Mean, seasonal cycle, trends, and storage
    Hauck, J., L. Gregor, C. Nissen, L. Patara, M. Hague, P. Mongwe, et al. (2023). The Southern Ocean carbon cycle 1985–2018: Mean, seasonal cycle, trends, and storage. Global Biogeochemical Cycles, 37, e2023GB007848. DOI:10.1029/2023GB007848
  3. The competition between anthropogenic aerosol and greenhouse gas climate forcing is revealed by North Pacific water mass changes
    Shi, J.-R., S. E. Wijffels, Y.-O. Kwon, L. D. Talley, S. T. Gille (2023). The competition between anthropogenic aerosol and greenhouse gas climate forcing is revealed by North Pacific water mass changes, Science Advances, 9, DOI:10.1126/sciadv.adh7746.
  4. Freshwater displacement effect on the Weddell Gyre carbon budget
    Taylor, B. A., G.A. MacGilchrist, M.R. Mazloff & L.D. Talley (2023). Freshwater displacement effect on the Weddell Gyre carbon budget. Geophysical Research Letters, 50, e2023GL103952. DOI:10.1029/2023GL103952
  5. Machine learning for daily forecasts of Arctic sea-ice motion: An attribution assessment of model predictive skill
    Hoffman, L., M. R. Mazloff, S. T. Gille, D. Giglio, C. M. Bitz, and P. Heimbach (2023). Machine learning for daily forecasts of Arctic sea-ice motion: An attribution assessment of model predictive skill, Artificial Intelligence for the Earth Systems, 2, 230004, DOI:10.1175/AIES-D-23-0004.1.
  6. Optimizing the Biogeochemical Argo Float distribution
    Chamberlain, P., L. D. Talley, B. D. Cornuelle, M. Mazloff, and S. T. Gille (2023). Optimizing the Biogeochemical Argo Float distribution, J. Atmos. Ocean. Tech., 40, 1355-1379, DOI:10.1175/JTECH-D-22-0093.1
  7. Using existing Argo trajectories to statistically predict future float positions with a transition matrix
    Chamberlain, P., L. D. Talley, M. Mazloff, E. van Sebille, S. T. Gille, T. Tucker, M. Scanderbeg, P. Robbins (2023). Using existing Argo trajectories to statistically predict future float positions with a transition matrix, J. Atmos. Ocean. Tech., 40, 1083-1103, DOI:10.1175/JTECH-D-22-0070.1
  8. Antarctica and the Southern Ocean
    Clem, K. R., and Coauthors (2023). Antarctica and the Southern Ocean. Bull. Amer. Meteor. Soc., 104, S322–S365. DOI:10.1175/BAMS-D-23-0077.1.
  9. Southern Ocean [in “State of the Climate in 2022”]
    Pezzi, L., R. Beadling, M. du Plessis, S. Gille, S. A. Josey, J.-R. Shi, M. Santini, E. Souza, G. MacGilchrist, and C. Schultz (2023). Southern Ocean [in “State of the Climate in 2022”], Bull. Amer. Meteor. Soc., 104 (8), DOI:10.1175/BAMS-D-23-0077.1.
  10. The impacts of optimizing model-dependent parameters on the Antarctic sea ice data assimilation
    Luo, H., Q. Yang, M. Mazloff, L. Nerger & D. Chen (2023). The impacts of optimizing model-dependent parameters on the Antarctic sea ice data assimilation. Geophysical Research Letters, 50, e2023GL105690. DOI:10.1029/2023GL105690
  11. Carbon outgassing in the Antarctic Circumpolar Current is supported by Ekman transport from the sea ice zone in an observation-based seasonal mixed-layer budget
    Sauvé, J., A.R. Gray, C.J. Prend, S.M. Bushinsky & S.C. Riser (2023). Carbon outgassing in the Antarctic Circumpolar Current is supported by Ekman transport from the sea ice zone in an observation-based seasonal mixed-layer budget. Journal of Geophysical Research: Oceans, 128, e2023JC019815. DOI:10.1029/2023JC019815
  12. Spatiotemporal characteristics of the near-surface turbulent cascade at the submesoscale in the Drake Passage
    Tedesco, P. F., L. E. Baker, A. C. Naveira Garabato, M. R. Mazloff, S. T. Gille, C. P. Caulfield, and A. Mashayek (2023). Spatiotemporal characteristics of the near-surface turbulent cascade at the submesoscale in the Drake Passage. J. Phys. Oceanogr. DOI:10.1175/JPO-D-23-0108.1
  13. The impacts of optimizing model-dependent parameters on the Antarctic sea ice data assimilation
    Luo, H., Yang, Q., Mazloff, M., Nerger, L., & Chen, D. (2023). The impacts of optimizing model-dependent parameters on the Antarctic sea ice data assimilation. Geophysical Research Letters, 50, e2023GL105690. DOI:10.1029/2023GL105690
  14. The Southern Ocean carbon cycle 1985–2018: Mean, seasonal cycle, trends, and storage
    Hauck, J., Gregor, L., Nissen, C., Patara, L., Hague, M., Mongwe, P., et al. (2023). The Southern Ocean carbon cycle 1985–2018: Mean, seasonal cycle, trends, and storage. Global Biogeochemical Cycles, 37, e2023GB007848. DOI:10.1029/2023GB007848
  15. Updated temperature correction for computing seawater nitrate with in situ ultraviolet spectrophotometer and submersible ultraviolet nitrate analyzer nitrate sensors
    Plant, J.N., C.M. Sakamoto, K.S. Johnson, T.L. Maurer and M.B. Bif (2023). Updated temperature correction for computing seawater nitrate with in situ ultraviolet spectrophotometer and submersible ultraviolet nitrate analyzer nitrate sensors. Limnology and Oceanography: Methods, 21. DOI:10.1002/lom3.10566
  16. The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project: A review
    Sarmiento, J.L., K.S. Johnson, L.A. Arteaga, S.M. Bushinsky, H.M. Cullen, A.R. Gray, R.M. Hotinski, T.L. Maurer, M.R. Mazloff, S.C. Riser, J.L. Russell, O.M. Schofield, L.D. Talley (2023). The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project: A review, Progress in Oceanography, 103130. DOI:10.1016/j.pocean.2023.103130.
  17. Southern Ocean glacial conditions and their influence on deglacial events
    Sikes, E.L., N.E. Umling, K.A. Allen, U.S. Ninnemann, R.S. Robinson, J.L. Russell, and T.J. Williams (2023). Southern Ocean glacial conditions and their influence on deglacial events. Nature Reviews Earth & Environment, 4 (7), 454–470. DOI:10.1038/s43017-023-00436-7
  18. The Four-Dimensional Carbon Cycle of the Southern Ocean
    Gray, A.R. (2023). Annual Review of Marine Science, 16:1. DOI:10.1146/annurev-marine-041923-104057
  19. The Sensitivity of Southern Ocean Air-Sea Carbon Fluxes to Background Turbulent Diapycnal Mixing Variability
    Ellison, E., A. Mashayek & M. Mazloff (2023). The Sensitivity of Southern Ocean Air-Sea Carbon Fluxes to Background Turbulent Diapycnal Mixing Variability. Journal of Geophysical Research: Oceans, 128, e2023JC019756. DOI:10.1029/2023JC019756
  20. Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations
    Turner, K. E., D.M. Smith, A. Katavouta and R.G. Williams (2023). Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations, Biogeosciences, 20, 1671–1690. DOI:10.5194/bg-20-1671-2023
  21. Net community production in the Argentine Basin estimated from nitrate drawdown using biogeochemical Argo floats
    Alkire, M. B. & S. Riser (2023). Net community production in the Argentine Basin estimated from nitrate drawdown using biogeochemical Argo floats. Journal of Geophysical Research: Oceans, 128, e2023JC019858. DOI:10.1029/2023JC019858
  22. Recent trends and variability in the oceanic storage of dissolved inorganic carbon
    Keppler, L., P. Landschützer, S.K. Lauvset, & N. Gruber (2023). Recent trends and variability in the oceanic storage of dissolved inorganic carbon. Global Biogeochemical Cycles, 37, e2022GB007677. DOI:10.1029/2022GB007677
  23. Zonal Distribution of Circumpolar Deep Water Transformation Rates and Its Relation to Heat Content on Antarctic Shelves
    Narayanan, A., S.T. Gille, M.R. Mazloff, M.D. du Plessis, K. Murali and F. Roquet (2023). Zonal Distribution of Circumpolar Deep Water Transformation Rates and Its Relation to Heat Content on Antarctic Shelves. Journal of Geophysical Research: Oceans, 128. DOI:10.1029/2022JC019310
  24. Southern Ocean acidification revealed by biogeochemical-Argo floats
    Mazloff, M. R., A. Verdy, S.T. Gille, K.S. Johnson, B. Cornuelle & J. Sarmiento (2023). Southern Ocean acidification revealed by biogeochemical-Argo floats. Journal of Geophysical Research: Oceans, 128, e2022JC019530. DOI:10.1029/2022JC019530
  25. Transiting consolidated ice strongly influenced polynya area during a shrink event in Terra Nova Bay in 2013
    Lin, Y., Q. Yang, M. Mazloff, et al. (2023). Transiting consolidated ice strongly influenced polynya area during a shrink event in Terra Nova Bay in 2013. Commun Earth Environ 4, 54. DOI:10.1038/s43247-023-00712-w
  26. A balanced atmospheric ensemble forcing for sea ice modeling in Southern Ocean
    Luo, H., Q. Yang, M. Mazloff & D. Chen (2023). A balanced atmospheric ensemble forcing for sea ice modeling in Southern Ocean. Geophysical Research Letters, 50, e2022GL101139. DOI:10.1029/2022GL101139
  27. Ocean carbon from space: Current status and priorities for the next decade
    Robert J.W. Brewin and Coauthors (2023). Ocean carbon from space: Current status and priorities for the next decade, Earth-Science Reviews, 240, 104386. DOI:10.1016/j.earscirev.2023.104386.
  28. Southern Ocean heat sink hindered by melting ice
    Russell, J.L. (2023). Southern Ocean heat sink hindered by melting ice. Nature, 615 (7954), 799–800. DOI:10.1038/d41586-023-00835-2
  29. Modification of North Atlantic Deep Water by Pacific/Upper Circumpolar Deep Water in the Argentine Basin
    Brand, S.V.S., C.J. Prend, L.D. Talley, et al. (2023). Modification of North Atlantic Deep Water by Pacific/Upper Circumpolar Deep Water in the Argentine Basin. Geophysical Research Letters, 50, e2022GL099419. DOI:10.1029/2022GL099419

2022

  1. Real-time quality control of optical backscattering data from Biogeochemical-Argo floats
    Dall’Olmo G., T.V.S. U Bhaskar, H. Bittig et al. (2022). Real-time quality control of optical backscattering data from Biogeochemical-Argo floats. Open Res Europe, 2:118. DOI:10.12688/openreseurope.15047.1
  2. Indo-Pacific sector dominates Southern Ocean carbon outgassing
    Prend, C.J., A.R. Gray, L.D. Talley, S.T. Gille, F.A. Haumann, K.S. Johnson, S.C. Riser, I. Rosso, J. Sauve, and J.L. Sarmiento (2022). Indo-Pacific sector dominates Southern Ocean carbon outgassing. Global Biogeochemical Cycles, 36, e2021GB007226. DOI:10.1029/2021GB007226
  3. Carbon to nitrogen uptake ratios observed across the Southern Ocean by the SOCCOM profiling float array
    Johnson, K. S., M.R. Mazloff, M.B. Bif, Y. Takeshita, H.W. Jannasch, T.L. Maurer, et al. (2022). Carbon to nitrogen uptake ratios observed across the Southern Ocean by the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 127, e2022JC018859. DOI:10.1029/2022JC018859
  4. Vertical structure in phytoplankton growth and productivity inferred from Biogeochemical-Argo floats and the Carbon-based Productivity Model
    Arteaga, L. A., M.J. Behrenfeld, E. Boss, & T.K. Westberry (2022). Vertical structure in phytoplankton growth and productivity inferred from Biogeochemical-Argo floats and the Carbon-based Productivity Model. Global Biogeochemical Cycles, 36, e2022GB007389. DOI:10.1029/2022GB007389
  5. Impact of downward longwave radiative deficits on Antarctic sea-ice extent predictability during the sea ice growth period
    Cerovečki, I., R. Sun, D.H. Bromwich, X. Zou, M.R. Mazloff & S.H. Wang (2022). Impact of downward longwave radiative deficits on Antarctic sea-ice extent predictability during the sea ice growth period. Environ. Res. Lett., 17, 084008. DOI:10.1088/1748-9326/ac7d66
  6. The deep ocean’s carbon exhaust
    Chen, H., F.A. Haumann, L.D. Talley, K.S. Johnson, J. Sarmiento (2022). The deep ocean’s carbon exhaust. Global Biogeochemical Cycles, 36. DOI:10.1029/2021GB007156
  7. Sub-seasonal forcing drives year-to-year variations of Southern Ocean primary productivity
    Prend, C.J., M.G. Keerthi, M. Lévy, O. Aumont, S.T. Gille and L.D. Talley (2022). Sub-seasonal forcing drives year-to-year variations of Southern Ocean primary productivity. Global Biogeochemical Cycles, 36 (7). DOI:10.1029/2022GB007329
  8. Importance of the Antarctic Slope Current in the Southern Ocean response to ice sheet melt and wind stress change
    Beadling, R. L., J.P. Krasting, S.M. Griffies, W.J. Hurlin, B. Bronselaer, J.L. Russell, et al. (2022). Importance of the Antarctic Slope Current in the Southern Ocean response to ice sheet melt and wind stress change. Journal of Geophysical Research: Oceans, 127, e2021JC017608. DOI:10.1029/2021JC017608
  9. Trophic level decoupling drives future changes in phytoplankton bloom phenology
    Yamaguchi, R., K.B. Rodgers, A. Timmermann, et al. (2022). Trophic level decoupling drives future changes in phytoplankton bloom phenology. Nat. Clim. Chang. 12, 469–476. DOI:10.1038/s41558-022-01353-1
  10. Attribution of space-time variability in global-ocean dissolved inorganic carbon
    Carroll, D., D. Menemenlis, S. Dutkiewicz, J.M. Lauderdale, J.F. Adkins, K.W. Bowman, et al. (2022). Attribution of space-time variability in global-ocean dissolved inorganic carbon. Global Biogeochemical Cycles, 36, e2021GB007162. DOI:10.1029/2021GB007162
  11. Subtropical contribution to Sub-Antarctic Mode Waters
    Castro, B. F., M. Mazloff, R.G. Williams & A.C. Naveira Garabato (2022). Subtropical contribution to Sub-Antarctic Mode Waters. Geophysical Research Letters, 49, e2021GL097560. DOI:10.1029/2021GL097560
  12. Tracer and observationally derived constraints on diapycnal diffusivities in an ocean state estimate
    Trossman, D. S., C.B. Whalen, T.W.N. Haine, A.F. Waterhouse, A.T. Nguyen, A. Bigdeli, M. Mazloff, and P. Heimbach (2022). Tracer and observationally derived constraints on diapycnal diffusivities in an ocean state estimate. Ocean Sci, 18, 729–759. DOI:10.5194/os-18-729-2022
  13. Controls on the boundary between thermally and non-thermally driven pCO2 regimes in the South Pacific
    Prend, C.J., J.M. Hunt, M.R. Mazloff, S.T. Gille, and L.D. Talley (2022). Controls on the boundary between thermally and non-thermally driven pCO2 regimes in the South Pacific. Geophys. Res. Lett. DOI:10.1029/2021GL095797
  14. Freshwater input and vertical mixing in the Canada Basin’s seasonal halocline: 1975 versus 2006-2012
    Rosenblum, E., J. Stroeve, S.T. Gille, L. B. Tremblay, C. Lique, R. Fajber, R. Galley, D.G. Barber, T. Loureiro, and J.V. Lukovich (2022). Freshwater input and vertical mixing in the Canada Basin’s seasonal halocline: 1975 versus 2006-2012. J. Phys. Oceanogr. DOI:10.1175/JPO-D-21-0116.1

2021

  1. Surface salinity under transitioning ice cover in the Canada Basin: Climate model biases linked to vertical distribution of fresh water
    Rosenblum, E., R. Fajber, J.C. Stroeve, S.T. Gille, L.B. Tremblay & E.C. Carmack (2021). Surface salinity under transitioning ice cover in the Canada Basin: Climate model biases linked to vertical distribution of fresh water. Geophysical Research Letters, 48, e2021GL094739. DOI:10.1029/2021GL094739
  2. The Role of Continental Topography in the Present-Day Ocean’s Mean Climate
    Stouffer, R.J., J.L. Russell, R.L. Beadling, A.J. Broccoli, J.P. Krasting, S. Malyshev and Z. Naiman (2021). The Role of Continental Topography in the Present-Day Ocean’s Mean Climate. J. Climate. DOI:10.1175/JCLI-D-20-0690.1
  3. Ocean warming and accelerating Southern Ocean zonal flow
    Shi, J.-R., L.D. Talley, S.P. Xie, W. Liu, S.T. Gille (2021). Ocean warming and accelerating Southern Ocean zonal flow, Nat. Clim. Chang. DOI:10.1038/s41558-021-01212-5
  4. On the role of the Antarctic Slope Front on the occurrence of the Weddell Sea polynya under climate change
    Lockwood, J. W., C. O. Dufour, S. M. Griffies, and M. Winton (2021). On the role of the Antarctic Slope Front on the occurrence of the Weddell Sea polynya under climate change. J. Climate, DOI:10.1175/JCLI-D-20-0069.1
  5. Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea
    Shi, Q., Q. Yang, L. Mu, J. Wang, F. Massonnet and M.R. Mazloff (2021). Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea. The Cryosphere, 15, 31–47. DOI:10.5194/tc-15-31-2021

2020

  1. Resolving and Parameterising the Ocean Mesoscale in Earth System Models
    Hewitt, H.T., M. Roberts, P. Mathiot, et al. (2020). Resolving and Parameterising the Ocean Mesoscale in Earth System Models. Curr Clim Change Rep 6, 137–152. DOI:10.1007/s40641-020-00164-w
  2. ESMValTool (v2.0) – Part 2: an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP6
    Eyring, V., L. Bock, A. Lauer, et al. (2020). SMValTool (v2.0) – Part 2: an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP6. Geoscientific Model Development, 13, 3383–3438. DOI:10.5194/gmd-2019-291

2019

  1. Taking climate model evaluation to the next level
    Eyring, V., P. Cox, G. Flato, et al. (2019). Taking climate model evaluation to the next level. Nature Climate Change, 9, 102–110. DOI:10.1038/s41558-018-0355-y
  2. Assessing the quality of Southern Ocean circulation in CMIP5 AOGCM and Earth System Model simulations
    Beadling, R.L., J.L. Russell, R.J. Stouffer, P.J. Goodman and M. Mazloff (2019). Assessing the quality of Southern Ocean circulation in CMIP5 AOGCM and Earth System Model simulations. J. Climate, 32, 5915-5940. DOI:10.1175/JCLI-D-19-0263.1
  3. Current Systems in the Southern Ocean
    Gille, S. T., and A. L. Gordon (2019). Current Systems in the Southern Ocean. In J. K. Cochran, J. H. Bokuniewicz, and L. P. Yager (eds.) Encyclopedia of Ocean Sciences, 3rd Edition, vol. 3, pp. 228-235. Oxford: Elsevier.
  4. Reassessing Southern Ocean air‐sea CO2 flux estimates with the addition of biogeochemical float observations
    Bushinsky, S. M., P. Landschützer, C. Rödenbeck, A.R. Gray, D. Baker, M.R. Mazloff et al. (2019). Reassessing Southern Ocean air‐sea CO2 flux estimates with the addition of biogeochemical float observations. Global Biogeochemical Cycles, 33, 1370–1388. DOI:10.1029/2019GB006176
  5. Temporal and Spatial Scales of Correlation in Marine Phytoplankton Communities
    Kuhn, A. M., S. Dutkiewicz, O. Jahn, S. Clayton, T.A. Rynearson, M.R. Mazloff, & A.D. Barton (2019). Temporal and spatial scales of correlation in marine phytoplankton communities. Journal of Geophysical Research: Oceans, 124, 9417–9438. DOI:10.1029/2019JC015331
  6. Identifying ocean swell generation events from Ross Ice Shelf seismic data
    Hell, M. C., B. D. Cornuelle, S. T. Gille, A. J. Miller, and P. D. Bromirski (2019). Identifying ocean swell generation events from Ross Ice Shelf seismic data. J. Atmos. Ocean. Tech., 36, 2171-2189. DOI:10.1175/JTECH-D-19-0093.1
  7. A deep eastern boundary current carrying Indian Deep Water south of Australia
    Narayanan, A., S.T. Gille, M.R. Mazloff, K. Murali (2019). A deep eastern boundary current carrying Indian Deep Water south of Australia. Geophysical Research: Oceans, 124. DOI:10.1029/2018JC014907
  8. A BGC-Argo Guide: Planning, Deployment, Data Handling and Usage
    Bittig, H.C., T. Steinhoff, H. Claustre, B. Fiedler, N.L. Williams, R. Sauzède, Arne Körtzinger, and J.-P. Gattuso (2019). A BGC-Argo Guide: Planning, Deployment, Data Handling and Usage. Frontiers in Marine Science, 6, 502. DOI:10.3389/fmars.2019.00502
  9. On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array
    Roemmich, D., M.H. Alford, H. Claustre, K. Johnson, B. King, J. Moum, et al. (2019). On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array. Frontiers in Marine Science, 6, 439. DOI:10.3389/fmars.2019.00439
  10. Southern Ocean [in “State of the Climate in 2019”]
    Tamsitt, V., S. Bushinsky, Z. Li, M. du Plessis, A. Foppert, S. Gille, et al. (2019). Southern Ocean [in “State of the Climate in 2019”]. Bull. Amer. Meteor. Soc., 101 (8), S167–S169. DOI:10.1175/BAMS-D-20-0105.1
  11. The observed seasonal cycle of macronutrients in Drake Passage: relationship to fronts and utility as a model metric
    Freeman, N.M., D.R. Munro, J. Sprintall, M.R. Mazloff, S. Purkey, I. Rosso, C.A. DeRanek, C. Sweeney (2019). The observed seasonal cycle of macronutrients in Drake Passage: relationship to fronts and utility as a model metric. Journal of Geophysical Research: Oceans, DOI:10.1029/2019JC015052
  12. Observing Changes in Ocean Carbonate Chemistry: Our Autonomous Future
    Bushinsky, S.M., Y. Takeshita & N.L. Williams (2019). Observing Changes in Ocean Carbonate Chemistry: Our Autonomous Future. Curr Clim Change Rep. DOI:10.1007/s40641-019-00129-8
  13. Winter Upper-Ocean Stability and Ice–Ocean Feedbacks in the Sea Ice–Covered Southern Ocean
    Wilson, E.A., S.C. Riser, E.C. Campbell, and A.P. Wong (2019). Winter Upper-Ocean Stability and Ice–Ocean Feedbacks in the Sea Ice–Covered Southern Ocean. J. Phys. Oceanogr. DOI:10.1175/JPO-D-18-0184.1
  14. Nutrient controls on export production in the Southern Ocean
    Arteaga, L.A., E. Boss, M.J. Behrenfeld et al. (2019). Nutrient controls on export production in the Southern Ocean. Global Biogeochemical Cycles, DOI:10.1029/2019GB006236

2018

  1. Identifying Lagrangian coherent vortices in a mesocale eddy-permitting ocean model
    Tarshish, N., R. Abernathey, C. Zhang, C.O. Dufour, I. Frenger, and S.M. Griffies (2018). Identifying Lagrangian coherent vortices in a mesocale eddy-permitting ocean model. Ocean Modelling, 130, 15-28. DOI:10.1016/j.ocemod.2018.07.001
  2. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion
    Swart, N.C., S.T. Gille, J.C. Fyfe & N.P. Gillett (2018). Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience, 11, 836–841. DOI:10.1038/s41561-018-0226-1
  3. Low-nutrient organic matter in the Sargasso Sea thermocline: A hypothesis for its role, identity, and carbon cycle implications
    Fong, M.B. and A.G. Dickson (2018). Low-nutrient organic matter in the Sargasso Sea thermocline: A hypothesis for its role, identity, and carbon cycle implications. Marine Chemistry, DOI:10.1016/j.marchem.2018.10.008
  4. Evidence of jet‐scale overturning ocean circulations in Argo float trajectories
    Li, Q., Lee, S. & Mazloff, M.R. (2018). Evidence of jet‐scale overturning ocean circulations in Argo float trajectories. Geophysical Research Letters, 45. DOI:10.1029/2018GL078950
  5. Southern Ocean [in “State of the Climate in 2017”]
    Swart, S., K.S. Johnson, M.R. Mazloff, A. Meijers, M.P. Meredith, L. Newman, and J.-B. Sallée (2018). Southern Ocean [in “State of the Climate in 2017”]. Bull. Amer. Meteor. Soc., 99(8).
  6. Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake
    Shi, J.-R., S.-P. Xie, and L.D. Talley (2018). Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake. J. Climate. DOI:10.1175/JCLI-D-18-0170.1
  7. Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO2
    Fay, A.R., N.S. Lovenduski, G.A. McKinley, D.R. Munro, C. Sweeney, A.R. Gray, P. Landschützer, B. Stephens, T. Takahashi, and N. Williams (2018). Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO2. Biogeosciences, 15. DOI:10.5194/bg-15-3841-2018
  8. Assessment of the Carbonate Chemistry Seasonal Cycles in the Southern Ocean from Persistent Observational Platforms
    Williams, N.L., L.W. Juranek, R.A. Feely, J.L. Russell, K.S. Johnson, B. Hales (2018). Assessment of the Carbonate Chemistry Seasonal Cycles in the Southern Ocean from Persistent Observational Platforms. J. Geophys. Res. Oceans. DOI:10.1029/2017JC012917
  9. A Multi-variate Empirical Orthogonal Function Method to Construct Nitrate Maps in the Southern Ocean
    Liang, Y., M.R. Mazloff, I. Rosso, S. Fang, and J. Yu (2018). A Multi-variate Empirical Orthogonal Function Method to Construct Nitrate Maps in the Southern Ocean. J. Atmos. Oceanic Technol. DOI:10.1175/JTECH-D-18-0018.1
  10. Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats
    Haëntjens, N., E.S. Boss, L.D. Talley (2018). Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats. J. Geophys. Res. Oceans, 122, 6583–6593. DOI:10.1029/2018JC013844
  11. An Alternative to Static Climatologies: Robust Estimation of Open Ocean CO2 Variables and Nutrient Concentrations From T, S, and O2 Data Using Bayesian Neural Networks
    Bittig, H.C., A. Körtzinger, C. Neill, E. van Ooijen, J.N. Plant, J. Hahn, K.S. Johnson, B. Yang, and S.R. Emerson (2018). An Alternative to Static Climatologies: Robust Estimation of Open Ocean CO2 Variables and Nutrient Concentrations From T, S, and O2 Data Using Bayesian Neural Networks. Front. Mar. Sci. DOI:10.3389/fmars.2018.00328
  12. Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean
    Gray, A.R., K.S. Johnson, S.M. Bushinsky, S.C. Riser, J.L. Russell, L.D. Talley, R. Wanninkhof, N.L. Williams, and J.L. Sarmiento (2018). Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophysical Research Letters. DOI:10.1029/2018GL078013
  13. Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake
    Shi, J.-R., S.-P. Xie, and L.D. Talley (2018). Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake. J. Climate. DOI:10.1175/JCLI-D-18-0170.1
  14. Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO2
    Fay, A.R., N.S. Lovenduski, G.A. McKinley, D.R. Munro, C. Sweeney, A.R. Gray, P. Landschützer, B. Stephens, T. Takahashi, and N. Williams (2018). Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO2. Biogeosciences, 15. DOI:10.5194/bg-15-3841-2018

2017

  1. Physical and biological drivers of biogeochemical tracers within the seasonal ice zone of the Southern Ocean from profiling floats
    Briggs, E., T.R. Martz, L.D. Talley, M.R. Mazloff and K.S. Johnson (2017). Physical and biological drivers of biogeochemical tracers within the seasonal ice zone of the Southern Ocean from profiling floats. J. Geophys. Res. Oceans, 123. DOI:10.1002/2017JC012846
  2. Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate
    Carter, B.R., R.A. Feely, N.L. Williams, A.G. Dickson, M.B. Fong, Y. Takeshita (2017). Updated methods for globally locally-interpolated estimation of alkalinity, pH, and Nitrate. Limnology & Oceanography Methods, 16, 119–131. DOI:10.1002/lom3.10232
  3. Agreement of CMIP5 Simulated and Observed Ocean Anthropogenic CO2 Uptake
    Bronselaer, B., M. Winton, J. Russell, C.L. Sabine, and S. Khatiwala (2017). Agreement of CMIP5 Simulated and Observed Ocean Anthropogenic CO2 Uptake. Geophysical Research Letters. DOI:10.1002/2017GL074435
  4. Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production
    Johnson, K.S., J.N. Plant, L.D. Talley, and J.L. Sarmiento (2017). Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production. J. Geophys. Res. Oceans, 122, 6668–6683. DOI:10.1029/2017JC012839
  5. Preconditioning of the Weddell Sea polynya by the ocean mesoscale and dense water overflows
    Dufour, C.O., A.K. Morrison, S.M. Griffies, I. Frenger, H. Zanowski, M. Winton (2017). Preconditioning of the Weddell Sea polynya by the ocean mesoscale and dense water overflows. Journal of Climate. DOI:10.1175/JCLI-D-16-0586.1
  6. Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats
    Haëntjens, N., E.S. Boss, and L.D. Talley (2017). Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats. J. Geophys. Res. Oceans, 122, 6583–6593. DOI:10.1029/2017JC012844
  7. Developing chemical sensors to observe the health of the global ocean
    Johnson, K.S. (2017). Developing chemical sensors to observe the health of the global ocean. IEEE Transducers 2017. DOI:10.1109/TRANSDUCERS.2017.7993975
  8. Space and time variability of the Southern Ocean carbon budget
    Rosso, I., M.R. Mazloff, A. Verdy, and L.D. Talley (2017). Space and time variability of the Southern Ocean carbon budget. J. Geophys. Res. Oceans, DOI:10.1002/2016JC012646
  9. A data assimilating model for estimating Southern Ocean biogeochemistry
    Verdy, A. and M.R. Mazloff (2017). A data assimilating model for estimating Southern Ocean biogeochemistry. J. Geophys. Res. Oceans, DOI:10.1002/2016JC012650
  10. Observing System Simulation Experiments for an array of autonomous biogeochemical profiling floats in the Southern Ocean
    Kamenkovich, I., A. Haza, A.R. Gray, C.O. Dufour, and Z. Garraffo (2017). Observing System Simulation Experiments for an array of autonomous biogeochemical profiling floats in the Southern Ocean. J. Geophys. Res. Oceans, DOI:10.1002/2017JC012819
  11. Biogeochemical sensor performance in the SOCCOM profiling float array
    Johnson, K.S., J.N. Plant, L.J. Coletti, H.W. Jannasch, C.M. Sakamoto, S.C. Riser, D.D. Swift, N.L. Williams, E. Boss, N. Haëntjens, L.D. Talley, and J.L. Sarmiento (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. J. Geophys. Res. Oceans, DOI:10.1002/2017JC012838

2016

  1. In situ phase-domain calibration of oxygen optodes on profiling floats
    Drucker, R. and S.C. Riser (2016). In situ phase-domain calibration of oxygen optodes on profiling floats. Methods in Oceanography, 17, 206-318. DOI:10.1016/j.mio.2016.09.007
  2. Assessing recent trends in high-latitude Southern Hemisphere surface climate
    Jones, J.M., S.T. Gille, H. Goosse, N.J. Abram, P.O. Canziani, D.J. Charman, K.R. Clem, X. Crosta, C. de Lavergne, I. Eisenman, M.H. England, R.L. Fogt, L.M. Frankcombe, G.J. Marshall, V. Masson-Delmotte, A.K. Morrison, A.J. Orsi, M.N. Raphael, J.A. Renwick, D.P. Schneider, G.R. Simpkins, E.J. Steig, B. Stenni, D. Swingedouw and T.R. Vance (2016). Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nature Climate Change, 6, 917-926. DOI:10.1038/NCLIMATE3103
  3. Temporal changes in the Antarctic Circumpolar Current: Implications for the Antarctic continental shelves
    Gille, S.T. and D.C. McKee (2016). Temporal changes in the Antarctic Circumpolar Current: Implications for the Antarctic continental shelves. Oceanography, 29(4), 96-105. DOI:10.5670/oceanog.2016.102
  4. Bringing biogeochemistry into the Argo age
    Johnson, K.S. and H. Claustre (2016). Bringing biogeochemistry into the Argo age. Eos, 97. DOI:10.1029/2016EO062427
  5. An advective mechanism for Deep Chlorophyll Maxima formation in southern Drake Passage
    Erickson, Z.K., A.F. Thompson, N. Cassar, J. Sprintall, and M.R. Mazloff (2016). An advective mechanism for Deep Chlorophyll Maxima formation in southern Drake Passage. Geophysical Research Letters, 43. DOI:10.1002/2016GL070565
  6. The effect of the Kerguelen Plateau on the ocean circulation
    Wang, J., M.R. Mazloff, and S.T. Gille (2016). The effect of the Kerguelen Plateau on the ocean circulation. J. Phys. Oceanogr. DOI:10.1175/JPO-D-15-0216.1
  7. Calculating surface ocean pCO2 from biogeochemical Argo floats equipped with pH: an uncertainty analysis
    Williams, N.L., L.W. Juranek, K.S. Johnson, R.A. Feely, S.C. Riser, L.D. Talley, J.L. Russell, J.L. Sarmiento, and R. Wanninkhof (2016). Calculating surface ocean pCO2 from biogeochemical Argo floats equipped with pH: an uncertainty analysis. Global Biogeochemical Cycles, 31(3). DOI:10.1002/2016GB005541
  8. Mechanisms of Southern Ocean Heat Uptake and Transport in a Global Eddying Climate Model
    Morrison, A.K., S.M. Griffies, M. Winton, W.G. Anderson, and J.L. Sarmiento (2016). Mechanisms of Southern Ocean Heat Uptake and Transport in a Global Eddying Climate Model. J. Climate, 29, 2059–2075. DOI:10.1175/JCLI-D-15-0579.1
  9. Empirical Algorithms to Estimate Water Column pH in the Southern Ocean
    Haëntjens, N., E.S. Boss, and L.D. Talley (2016). Empirical Algorithms to Estimate Water Column pH in the Southern Ocean. J. Geophys. Res. Oceans, 43, 3415–3422. DOI:10.1002/2016GL068539
  10. Stratified tidal flow over a tall ridge above and below the turning latitude
    Musgrave, R.C., R. Pinkel, J.A. MacKinnon, M.R. Mazloff and W.R. Young (2016). Stratified tidal flow over a tall ridge above and below the turning latitude. Journal of Fluid Mechanics, 793, 933-957. DOI:10.1017/jfm.2016.150
  11. Rapid variability of Antarctic Bottom Water transport into the Pacific Ocean inferred from GRACE
    Mazloff, M. and C. Boening (2016). Rapid variability of Antarctic Bottom Water transport into the Pacific Ocean inferred from GRACE. Geophysical Research Letters, 43, 3822–3829. DOI:10.1002/2016GL068474
  12. Accurate oxygen measurements on modified Argo floats using in situ air calibrations
    Bushinsky, S.M., S.R. Emerson, S.C. Riser, and D.D. Swift (2016). Accurate oxygen measurements on modified Argo floats using in situ air calibrations. Limnol. Oceanogr. Methods. DOI:10.1002/lom3.10107
  13. Deep-Sea DuraFET: A pressure tolerant pH sensor designed for global sensor networks
    Johnson, K.S., H.W. Jannasch, L.J. Coletti, V.A. Elrod, T.R. Martz, Y. Takeshita, R.J. Carlson, J.G. Connery (2016). Deep-Sea DuraFET: A pressure tolerant pH sensor designed for global sensor networks. Analytical Chemistry, 88(6), 3249-3256. DOI:10.1021/acs.analchem.5b04653

2015

  1. Air oxygen calibration of oxygen optodes on a profiling float array
    Johnson, K. S., J. N. Plant, S. C. Riser, and D. Gilbert (2015). Air oxygen calibration of oxygen optodes on a profiling float array. Journal of Atmospheric and Oceanic Technology, 32, 2160–2172, 2016. DOI:10.1175/JTECH-D-15-0101.1
  2. Complex functionality with minimal computation: promise and pitfalls of reduced-tracer ocean biogeochemistry model
    Galbraith E. D., J. P. Dunne, A. Gnanadesikan, R. D. Slater, J. L. Sarmiento, C. O. Dufour, G. F. de Souza, D. Bianchi, M. Claret, K. B. Rodgers, S. S. Marvasti (2015). Complex functionality with minimal computation: promise and pitfalls of reduced-tracer ocean biogeochemistry model. Journal of Advances in Modeling Earth Systems, 7, 2012-2028. DOI:10.1002/2015MS000463
  3. Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean
    C.O. Dufour, S.M., Griffies, G.F. de Souza, I. Frenger, A.K. Morrison, J.B. Palter, J.L. Sarmiento, E.D. Galbraith, J.P. Dunne, W.G. Anderson, R.D. Slater (2015). Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr., 45, 3057–3081. DOI:10.1175/JPO-D-14-0240.1
  4. Topographic form stress in the Southern Ocean State Estimate
    Masich, J., T. K. Chereskin, and M. R. Mazloff (2015). Topographic form stress in the Southern Ocean State Estimate. J. Geophys. Res. Oceans, 120, 7919–7933. DOI:10.1002/2015JC011143
  5. Quantifying anthropogenic carbon inventory changes in the Pacific Sector of the Southern Ocean
    Williams, N.L., R. A. Feely, C.L. Sabine, A.G. Dickson, J.H. Swift, L.D. Talley, J.L. Russell (2015). Quantifying anthropogenic carbon inventory changes in the Pacific Sector of the Southern Ocean. Marine Chemistry, 174,147–160. DOI:10.1016/j.marchem.2015.06.015
  6. Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer
    Carranza, M.M. and S.T. Gille (2015). Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer. Journal of Geophysical Research – Oceans, 120, 304-323. DOI:10.1002/2014JC010203
  7. Upwelling in the Southern Ocean
    A.K. Morrison, T.L. Froelicher, J.L. Sarmiento (2015). Upwelling in the Southern Ocean. Physics Today, 68, 1. DOI:10.1063/PT.3.2654

2014

Submitted publications

  • Acoustic float tracking with the Kalman smoother
    Chamberlain, P., B. Cornuelle, L. D. Talley, K. Speer, C. Hancock, and S. Riser (2022). Submitted to J. Atm. Oceanic Tech.
  • Climate mitigation averts corrosive acidification in the upper ocean
    Schlunegger, S., K. Rodgers, B. Hales, J. Dunne, M. Ishii, R. Yamaguchi, R. Slater (2021). Nature, under review.
  • “Direct observation of the three-dimensional meridional overturning circulation in the Southern Ocean”
    Gray, A. R. and S. C. Riser, in review, Science

Ph.D. Theses

  1. Constraining Antarctic polynya formation and sea ice and snow evolution using autonomous observations and modeling
    Campbell, Ethan. University of Washington, Seattle, 2025.
  2. Semi-Lagrangian Float Motion and Observing System Design
    Chamberlain, Paul. University of California San Diego, 2022.
  3. Physical controls on Southern Ocean biogeochemistry.
    Prend, Channing. University of California San Diego, 2022.
  4. Modeling Heat and Carbon in the Argentine Basin
    Swierczek, Stan. University of Arizona, Tucson, 2021.
  5. Responses of the Southern Ocean in a Changing Climate
    Shi, Jia-rui. University of California San Diego, 2021.
  6. Uncertainty of spectrophotometric pH measurements in seawater and implications for ocean carbon chemistry
    Fong, Michael. University of California San Diego, 2021.
  7. Representation of Large-Scale Ocean Circulation in the Atlantic and Southern Ocean in Climate Model Simulations and Projected Changes under Increased Warming
    Beadling, Rebecca. University of Arizona, Tucson, 2020.
  8. Sea ice and upper ocean variability in the Southern Ocean
    Wilson, Earle. University of Washington, Seattle, 2019.
  9. Aspects of the Three-Dimensionality of the Southern Ocean Overturning Circulation
    Tamsitt, Veronica. University of California, San Diego, 2018.
  10. New Insights on the Southern Ocean Carbon Cycle from Biogeochemical Argo Floats
    Williams, Nancy L. Oregon State University, Corvallis, 2018.
  11. Expanding marine biogeochemical observations utilizing ISFET pH sensing technology and autonomous platforms
    Briggs, Ellen M. University of California San Diego, 2017.

Articles

  1. Phytoplankton shield ice shelves from summer heat
    Sidik, S. M. (2024). Eos, 105, DOI: 10.1029/2024EO240407.
  2. Bringing biogeochemistry into the Argo age
    Johnson, K. S., and H. Claustre (2016), Eos, 97.
  3. Anthropogenic carbon and heat uptake by the ocean: Will the Southern Ocean remain a major sink?
    Dufour, C. O., I. Frenger, T. L. Frolicher, A. R. Gray, S. M. Griffes, A. K. Morrison, J. L. Sarmiento, and S. A. Schlunegger (2015). US CLIVAR Variations, 13(4), Fall, pp. 1-8.
  4. Estimating Southern Ocean air-sea fluxes from models and observations
    Gille, S., I. Cerovecki, M. Mazloff, and V. Tamsitt (2015). US CLIVAR Variations, 13(4), Fall, pp. 8-12.
  5. Workshop Summary: Air-Sea Fluxes in the Southern Ocean
    Gille, S. (2015), September 21-23, Frascati, Italy, CliC News, 21 October.
  6. Workshop: Southern Ocean Air-Sea Fluxes, 21-23 September 2015 – Frascati, Italy
    Mazloff, M. and S. Swart (2015). SOOS Newsletter.
  7. Air-Sea Fluxes for the Southern Ocean: Strategies and Requirements for Detecting Physical and Biogeochemical Exchanges
    Gille, S., S. Josey, and S. Swart (2016). Eos, 13 May.
  8. State estimation for determining the properties and sensitivities of the Southern Ocean carbon cycle
    Mazloff, M., and A. Verdy (2015). US CLIVAR Variations, 13(4), Fall, pp. 20-25.
  9. Biogeochemical metrics for the evaluation of the Southern Ocean in Earth system models
    Russell, J.R. and I. Kamenkovich (2015). US CLIVAR Variations, 13(4), Fall, pp. 26-31.
  10. The Southern Ocean Carbon and Climate Observations and Modeling Program (SOCCOM)
    Russell, J.R., J.L. Sarmiento, H. Cullen, R. Hotinski, K. Johnson, S. Riser, and L. Talley (2014). Ocean Carbon and Biogeochemistry Newsletter, Fall, pp. 1-5.

Reports & White Papers