External publications using SOCCOM data

  1. Latitudinal trends in drivers of the Southern Ocean spring bloom onset
    Schlosser, T. L., Strutton, P. G., Baker, K., & Boyd, P. W. (2025). Latitudinal trends in drivers of the Southern Ocean spring bloom onset. Journal of Geophysical Research: Oceans, 130, e2024JC021099. DOI:10.1029/2024JC021099
  2. One-third of Southern Ocean productivity is supported by dust deposition
    Weis, J., Z. Chase, C. Schallenberg et al. (2024). One-third of Southern Ocean productivity is supported by dust deposition. Nature 629, 603–608. DOI:10.1038/s41586-024-07366-4
  3. Global estimates of particulate organic carbon from the surface ocean to the base of the mesopelagic
    Fox, J. E., M. Behrenfeld, K. H. Halsey, et al. (2024). Global estimates of particulate organic carbon from the surface ocean to the base of the mesopelagic. ESS Open Archive. DOI:10.22541/essoar.171017314.40658424/v1
  4. Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats
    Izett, R. W., K. Fennel, A. C. Stoer and D. P. Nicholson (2024). Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats. Biogeosciences, 21, 13–47. DOI:10.5194/bg-21-13-2024
  5. Subantarctic Mode Water biogeochemical formation properties and interannual variability
    Bushinsky, S. M., & I. Cerovečki (2023). Subantarctic Mode Water biogeochemical formation properties and interannual variability. AGU Advances, 4, e2022AV000722. DOI:10.1029/2022AV000722
  6. Sparse observations induce large biases in estimates of the global ocean CO2 sink: an ocean model subsampling experiment
    Hauck, J., L. Gregor, C. Nissen, L. Patara, M. Hague, P. Mongwe, et al. (2023). Sparse observations induce large biases in estimates of the global ocean CO2 sink: an ocean model subsampling experiment. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381, 20220063. DOI:10.1098/rsta.2022.0063
  7. Biogenic carbon pool production maintains the Southern Ocean carbon sink
    Huang, Y., A. J. Fassbender and S. M. Bushinsky (2023). Biogenic carbon pool production maintains the Southern Ocean carbon sink. Proceedings of the National Academy of Sciences, 120(18). DOI:10.1073/pnas.2217909120
  8. Majority of Southern Ocean Seasonal Sea Ice Zone Bloom Net Community Production Precedes Total Ice Retreat
    McClish, S., & S. M. Bushinsky (2023). Majority of Southern Ocean Seasonal Sea Ice Zone Bloom Net Community Production Precedes Total Ice Retreat. Geophysical Research Letters. DOI:10.1029/2023GL103459
  9. Ocean carbon from space: Current status and priorities for the next decade
    Robert J. W. Brewin, Shubha Sathyendranath, Gemma Kulk et al. (2023). Ocean carbon from space: Current status and priorities for the next decade. Earth-Science Reviews, 240, 104386. DOI:10.1016/j.earscirev.2023.104386
  10. Estimating ocean net primary productivity from daily cycles of carbon biomass measured by profiling floats
    Stoer, A. C. and K. Fennel (2023). Estimating ocean net primary productivity from daily cycles of carbon biomass measured by profiling floats. Limnology and Oceanography Letters, 8, 368–375. DOI:10.1002/lol2.10295
  11. Operational monitoring of open-ocean carbon dioxide removal deployments: Detection, attribution, and determination of side effects
    Boyd, P. W., H. Claustre, L. Legendre, J.-P. Gattuso, and P.-Y. Le Traon (2023). Operational monitoring of open-ocean carbon dioxide removal deployments: Detection, attribution, and determination of side effects. Oceanography, 36(Supplement 1):2–10, DOI:10.5670/oceanog.2023.s1.2
  12. Environmental drivers of coccolithophore growth in the Pacific sector of the Southern Ocean
    Oliver, H., D. J. McGillicuddy, K. M. Krumhardt, M. C. Long, N. R. Bates, B. C. Bowler, et al. (2023). Environmental drivers of coccolithophore growth in the Pacific sector of the Southern Ocean. Global Biogeochemical Cycles, 37, e2023GB007751. DOI:10.1029/2023GB007751
  13. Evidence of phytoplankton blooms under Antarctic sea ice
    Horvat, C., K. Bisson, S. Seabrook, A. Cristi and L. C. Matthes (2022). Evidence of phytoplankton blooms under Antarctic sea ice. Frontiers in Marine Science, 9, 942799. DOI:10.3389/fmars.2022.942799
  14. The relationship between nitrate and potential density in the ocean south of 30°S
    Xu, D., T. Wang, X. Xing & C. Bian (2022). The relationship between nitrate and potential density in the ocean south of 30°S. Journal of Geophysical Research: Oceans, 127, e2022JC018948. DOI:10.1029/2022JC018948
  15. Southern Ocean phytoplankton stimulated by wildfire emissions and sustained by iron recycling
    Weis, J., C. Schallenberg, Z. Chase, A. R. Bowie, B. Wojtasiewicz, M. M. G. Perron, et al. (2022). Southern Ocean phytoplankton stimulated by wildfire emissions and sustained by iron recycling. Geophysical Research Letters, 49, e2021GL097538. DOI:10.1029/2021GL097538
  16. New estimates of Southern Ocean annual net community production revealed by BGC-Argo floats
    Su, J., C. Schallenberg, T. Rohr, P. G. Strutton, & H. E. Phillips (2022). New estimates of Southern Ocean annual net community production revealed by BGC-Argo floats. Geophysical Research Letters. DOI:10.1029/2021GL097372
  17. Seasonal cycles of phytoplankton and net primary production from biogeochemical argo float data in the south-west Pacific Ocean
    Chiswell, S. M., A. Gutiérrez-Rodríguez, M. Gall, K. Safi, R. Strzepek, M. R. Décima, S. D. Nodder (2022). Seasonal cycles of phytoplankton and net primary production from biogeochemical argo float data in the south-west Pacific Ocean. Deep-Sea Research Part I. DOI:10.1016/j.dsr.2022.103834
  18. Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean
    Bisson, K. M., E. Boss, P. J. Werdell, A. Ibrahim, & M. J. Behrenfeld (2022). Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean. Biogeosciences, 19, 1245–1275. DOI:10.5194/bg-19-1245-2022
  19. Enhanced ventilation in energetic regions of the Antarctic Circumpolar Current
    Dove, L. A., D. Balwada, A. F. Thompson & A. R. Gray (2021). Enhanced ventilation in energetic regions of the Antarctic Circumpolar Current. Geophysical Research Letters, 49, e2021GL097574. DOI:10.1029/2021GL097574
  20. Argo Float Reveals Biogeochemical Characteristics Along the Freshwater Gradient Off Western Patagonia
    Jena, B., M. Ravichandran, & J. Turner (2021). Argo Float Reveals Biogeochemical Characteristics Along the Freshwater Gradient Off Western Patagonia. Frontiers in Marine Science, 8, 613265. DOI:10.3389/fmars.2021.613265
  21. How are under ice phytoplankton related to sea ice in the Southern Ocean?
    Bisson, K. M., and B. B. Cael (2021). How are under ice phytoplankton related to sea ice in the Southern Ocean? Geophysical Research Letters, 48, e2021GL095051. DOI:10.1029/2021GL095051
  22. Evidence of episodic nitrate injections in the oligotrophic North Pacific associated with surface chlorophyll blooms
    Wilson, C. (2021). Evidence of episodic nitrate injections in the oligotrophic North Pacific associated with surface chlorophyll blooms. Journal of Geophysical Research: Oceans, 126, e2021JC017169. DOI:10.1029/2021JC017169
  23. Linking Southern Ocean Mixed-Layer Dynamics to Net Community Production on Various Timescales
    Li, Z., M. S. Lozier, & N. Cassar (2021). Linking Southern Ocean Mixed-Layer Dynamics to Net Community Production on Various Timescales. Journal of Geophysical Research: Oceans, 126, e2021JC017537. DOI:10.1029/2021JC017537
  24. Evidence for the Impact of Climate Change on Primary Producers in the Southern Ocean
    Pinkerton, M. H., P. W. Boyd, S. Deppeler, A. Hayward, J. Höfer, & S. Moreau (2021). Evidence for the Impact of Climate Change on Primary Producers in the Southern Ocean. Frontiers in Ecology and Evolution, 9, 592027. DOI:10.3389/fevo.2021.592027
  25. Antarctica and the Southern Ocean [in “State of the Climate in 2020”]
    Stammerjohn, S. & T. Scambos, Eds. (2021). Antarctica and the Southern Ocean [in “State of the Climate in 2020”]. Bull. Amer. Meteor. Soc., 102(8), S317–S355. DOI:10.1029/2020GL091748
  26. Constraining Southern Ocean CO2 flux uncertainty using uncrewed surface vehicle observations
    Sutton, A. J., N. L. Williams & B. Tilbrook (2021). Constraining Southern Ocean CO2 flux uncertainty using uncrewed surface vehicle observations. Geophysical Research Letters, 48, e2020GL091748. DOI:10.1029/2020GL091748
  27. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
    Tang, W., J. Llort, J. Weis, et al. (2021). Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature, 597, 370–375. DOI:10.1038/s41586-021-03805-8
  28. Particulate backscattering in the global ocean: A comparison of independent assessments
    Bisson, K. M., E. Boss, T. K. Westberry, M. J. Behrenfeld (2021). Particulate backscattering in the global ocean: A comparison of independent assessments. Optics Express, 27. DOI:10.1364/OE.27.030191
  29. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean
    Ardyna, M., L. Lacour, S. Sergi, F. d’Ovidio, J.-B. Sallée, M. Rembauville, S. Blain, A. Tagliabue, R. Schlitzer, C. Jeandel, K. R. Arrigo & H. Claustre (2019). Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nature Communications, 2451, 10. DOI:10.1038/s41467-019-09973-6
  30. Biofloat observations of a phytoplankton bloom and carbon export in the Drake Passage
    Davies, A. R., Veron, F., Oliver, M. J. (2019). Biofloat observations of a phytoplankton bloom and carbon export in the Drake Passage. Deep-Sea Research Part II. DOI:10.1016/j.dsr.2019.02.004
  31. Recent reoccurrence of large open‐ocean polynya on the Maud Rise seamount
    Jena, B., M. Ravichandran, and J. Turner (2019). Recent reoccurrence of large open‐ocean polynya on the Maud Rise seamount. Geophysical Research Letters, 46, e2018GL081482. DOI:10.1029/2018GL081482
  32. Open-ocean polynyas and deep convection in the Southern Ocean
    Cheon, W. G. and A. L. Gordon (2019). Open-ocean polynyas and deep convection in the Southern Ocean. Scientific Reports, 9, 6935. DOI:10.1038/s41598-019-43466-2
  33. What Fraction of the Pacific and Indian Oceans’ Deep Water is formed in the North Atlantic?
    Rae, J. W. B. and W. Broecker (2018). What Fraction of the Pacific and Indian Oceans’ Deep Water is formed in the North Atlantic? Biogeosciences Discuss. DOI:10.5194/bg-2018-8
  34. Evaluating Southern Ocean Carbon Eddy-Pump From Biogeochemical-Argo Floats
    Llort, J., C. Langlais, R. Matear, S. Moreau, A. Lenton, and P. G. Strutton (2017). Evaluating Southern Ocean Carbon Eddy-Pump From Biogeochemical-Argo Floats. Journal of Geophysical Research: Oceans, 123, 971–984. DOI:10.1002/2017JC012861
  35. Stirring Up the Biological Pump: Vertical Mixing and Carbon Export in the Southern Ocean
    Stukel, M. R. and H. W. Ducklow (2017). Stirring Up the Biological Pump: Vertical Mixing and Carbon Export in the Southern Ocean. Global Biogeochemical Cycles. DOI:10.1002/2017GB005652
  36. Particulate concentration and seasonal dynamics in the mesopelagic ocean based on the backscattering coefficient measured with Biogeochemical-Argo Floats
    Poteau, A., E. Boss, and H. Claustre (2017). Particulate concentration and seasonal dynamics in the mesopelagic ocean based on the backscattering coefficient measured with Biogeochemical-Argo Floats. Geophysical Research Letters, 44. DOI:10.1002/2017GL073949
  37. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump
    Dall’Olmo, G., J. Dingle, L. Polimene, R. J. W. Brewin, and H. Claustre (2016). Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nature Geoscience, 9, 820–823. DOI:10.1038/NGEO2818